3. Общая характеристика временных рядов и динамических моделей. Автокорреляция уровней временного ряда и выявление его структуры.

Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием факторов:

· формирующих тенденцию ряда (тренд, характеризующий совокупное долговременное воздействие множества факторов на динамику изучаемого явления – возрастание или убывание);

· формирующих циклические колебания ряда (сезонного хар-ра, связанные с конъюнктурой рынка);

· случайные факторы.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. В случае суммы – модель аддитивная, в случае произведения – модель мультипликативная.

Пусть исследуется показатель Y. Его значение в текущий момент (период) времени t обозначают yt; значения Y в последующие моменты обозначаются yt+1, yt+2, … , yt+k, … ; значения Y в предыдущие моменты обозначаются  yt-1,  yt-2, … ,  yt-k, … .

Если при анализе развития экономического процесса во времени используются в качестве объясняющих переменных не только текущие их значения, но и некоторые предыдущие по времени значения, а также само время T, то модель называется динамической.

Переменные, влияние которых характеризуется определенным запаздыванием - лаговые переменные. Лаг - временное запаздывание.

Причин наличия лагов в экономике много, например:

· психологические причины (инерция в поведении человека и т.п.);

· технологические причины (инерция в использовании устаревшего оборудования и т.п.);

· институциональные причины (определенного постоянства во времени требуют контракты, договоры и т.п.);

· специфика механизмов формирования экономических показателей (их характер достаточно инерционен

Динамические модели подразделяются на два класса:

1.     Модели с распределенными лагами – содержат в качестве лаговых переменных лишь независимые (объясняющие) переменные. Примером является модель: .

2.    Авторегрессионные модели – это модели, уравнения которых в качестве лаговых объясняющих переменных включают зависимые переменные. Примером является модель:

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда  называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Два важных свойства коэффициента автокорреляции:

· он строится по аналогии с линейным коэффициентом корреляции и, таким образом, характеризует тесноту только линейной связи текущего и предыдущего уровней ряда (для некоторых временных рядов, имеющих сильную нелинейную тенденцию, коэффициент автокорреляции уровней исходного ряда может приближаться к нулю);

· по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда (большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию).

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости этой функции от величины лага (порядка коэффициента корреляции) называется коррелограммой. И сама автокорреляционная функция, и коррелограмма позволяют выявить структуру ряда (определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущим уровнями ряда наиболее тесная).

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию (то есть трендовый компонент T). Если наиболее высоким оказался коэффициент автокорреляции порядка τ, ряд содержит циклические колебания  (циклическую компоненту S) с периодичностью в τ моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

 

Хостинг от uCoz